DPhil Proposal Dynamics of Neutral Evolution in the Development of Neural Controllers
نویسنده
چکیده
Evolutionary robotics has successfully exploited the principle of natural selection. This approach places great importance in understanding the dynamics of the evolutionary process. Increasing amount of research points towards selective neutrality as an important and beneficial factor in evolution. Among other things, it eliminates the picture of populations becoming trapped on local hilltops. This research asks, what are the benefits of neutrality in the evolution of simple model nervous systems for autonomous agents? And what mechanisms can be incorporated in the development of neural controllers which make use of neutral networks during evolution? Potential mechanisms have been suggested to arise in more biological plausible genotype-phenotype mappings, such as the use of a genetic regulatory network or a morphogenetic process. Progress in this area would be of major significance in the evolutionary approach to robotics. Furthermore, it would help understand the role of neutral networks in evolution and the (far from understood) relationship between embryological development and evolution.
منابع مشابه
Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks
This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...
متن کاملDynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملGlobal Stabilization of Attitude Dynamics: SDRE-based Control Laws
The State-Dependant Riccati Equation method has been frequently used to design suboptimal controllers applied to nonlinear dynamic systems. Different methods for local stability analysis of SDRE controlled systems of order greater than two such as the attitude dynamics of a general rigid body have been extended in literature; however, it is still difficult to show global stability properties of...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کامل